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PCA

1. Suppose 𝑥", … , 𝑥% ∈ ℝ( are datapoints you want to represent in 𝑘 < 𝑑 dimensions.

1. Explain how to do this using PCA

2. How can you implement PCA using SVD?

3. How to determine an opOmal value for k?
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PCA

1. PCA steps: 

i. Center your data: If X =
⋯𝑥" ⋯

⋮
⋯𝑥% ⋯

∈ ℝ%×( is your data matrix, then A[𝑖, j] = 𝑋 𝑖, 𝑗 − "
%
∑: 𝑋 [𝑝, 𝑗]

ii. Use the new matrix A of centered data instances to construct the covariance matrix 𝑆 = 𝐴>𝐴 ∈ ℝ(×(

iii. Spectral decomposition of S: 𝑆 = 𝑉𝐷𝑉>

iv. Choose the top k eigenvalues (𝜆", … , 𝜆B) and the eigenvectors (𝑣", … , 𝑣B) from V corresponding to those 

eigenvalues

v. Construct your new data matrix as 𝑋%DE = 𝐴𝑉B =
⋯𝑎" ⋯

⋮
⋯𝑎% ⋯

⋮ ⋮ ⋮
𝑣" ⋯ 𝑣B
⋮ ⋮ ⋮

∈ ℝ%×B
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2. PCA using SVD: Let’s do SVD on our centered data matrix A: 𝐴 = 𝑀Σ𝑁>

⇒ 𝐴>𝐴 = 𝑁Σ>Σ𝑁> = 𝑁𝐷𝑁>

We see that 𝐷 = Σ>Σ ⇒ 𝜆K = 𝜎KM

Thus we can use the first k right singular vectors to perform the projection

3. Optimal value of k can be chosen using

1. Scree plot

2. Fraction of variance explained by top k eigenvalues
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PCA

1. Let 𝑋 ∈ ℝ%×( be your matrix of data points. Suppose you are implementing PCA. Someone suggests that you should 

standardize your data before calculating the eigenvalues. How do you standardize the data? Is it really required?
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PCA

Solution: If X =
⋯𝑥" ⋯

⋮
⋯𝑥% ⋯

∈ ℝ%×( is your data matrix, then A[𝑖, 𝑗] = N K,O PQR
SR

, where 

𝜇O =
1
𝑛W

:

𝑋 𝑝, 𝑗 𝑎𝑛𝑑

𝜎OM =W
:

𝑋 𝑝, 𝑗 − 𝜇O
M

Centering the data instances is necessary because otherwise, the principal components get influenced by the location of 

the data in the feature space. This is equivalent to saying that if we don’t center the data, then we are trying to 

approximate the data by a subspace and not an affine space which is less efficient. You may not want to standardize the 

data if you think the differences in scale are informative. In general, features with larger scale influences the principal 

components more which may not be desired in some scenarios



Ashwin Bhola (CDS, NYU) DS-GA 1014 Oct 30, 2019 

PCA



Ashwin Bhola (CDS, NYU) DS-GA 1014 Oct 30, 2019 

PCA

One dimensional 
subspace that maximizes 
the variance 



Ashwin Bhola (CDS, NYU) DS-GA 1014 Oct 30, 2019 

PCA

One dimensional 
subspace that maximizes 
the variance 

This also maximizes the 
variance. Why is this not 
the output of PCA?

Because we force our principal components to pass through origin which works perfectly only if the data is centered
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PCA

1. PCA can also be thought of as finding a d-dimensional affine space such that the sum of 𝑙2 distance between the data 

points and their projection on the affine space is minimum. How to formulate this optimization mathematically?
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PCA

𝑥B

Origin

Let 𝑣", … , 𝑣( be an orthonormal basis of subspace S parallel to 

the affine space we are trying to find. Assume that 𝜇 is the 

distance between this subspace and the affine space we are 

trying to find.

ObjecOve: min∑B]"% 𝑥B − 𝑥B
M

Now, 𝑥B = 𝜇 + 𝑣, where 𝑣 ∈ 𝑆

Let v = ∑K]"( 𝛽B K𝑣K = 𝑉𝛽B (V is a matrix with 𝑣K as the 𝑖bc

column)

Thus, the objecOve funcOon is:min∑B]"% 𝑥B − 𝜇 − 𝑉𝛽B
M

And this minimizaOon is carried to find the affine space. Thus, we 

minimize the funcOon over 𝜇 ∈ ℝ:, V ∈ ℝ:×(, 𝛽Be 𝑠 ∈ ℝ(

𝑥B

𝜇

Subspace S

Affine space

𝑣
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