Mid-term review

Ashwin Bhola

CDS, NYU

Oct 17th , 2019

Review

- 1. Let S be a subspace of \mathbb{R}^n and let P_S be an orthogonal projection onto S. Show that dim $(S) = Tr(P_S)$
- 2. True or False:
 - 1. Rank of a symmetric matrix is equal to the number of distinct eigenvalues
 - 2. Eigenvectors associated with distinct eigenvalues are orthogonal for a symmetric matrix
 - 3. Eigenvectors associated with the same eigenvalue cannot be orthogonal for a symmetric matrix
 - 4. Let $A, B \in \mathbb{R}^{n \times n}$. If $v \in \mathbb{R}^n$ is an eigenvector of A and B, then v is an eigenvector of A+B
 - 5. Let $A, B \in \mathbb{R}^{n \times n}$. If $v \in \mathbb{R}^n$ is an eigenvector of A and B, then v is an eigenvector of AB
 - 6. Let $A \in \mathbb{R}^{n \times n}$ and $v_1, v_2 \in \mathbb{R}^n$ be two eigenvectors of A associated with the eigenvalue λ . Any vector in the $span(v_1, v_2)$ is also an eigenvector of A associated with the eigenvalue λ
 - 7. If the input vectors u_1, \ldots, u_n are already orthogonal, the output of Gram Schmidt algorithm will be u_1, \ldots, u_n

Review

- 1. Let $x \in \mathbb{R}^n \setminus \mathbf{0}$ such that $M = xx^T$
 - 1. Is M symmetric?
 - 2. What is the rank of M?
 - 3. What are the eigenvalues of M and their multiplicity?
- Let A ∈ ℝ^{n×n} be a symmetric matrix. Let u₁, ..., u_n be an orthonormal basis of ℝⁿ consisting of eigenvectors of A and let λ₁, ..., λ_n be the corresponding eigenvalues (Au_i = λ_iu_i ∀ i). Give orthonormal basis of Ker(A) and Im(A) in terms of vectors u₁, ... u_n