Mid-term review

Ashwin Bhola

CDS, NYU

Oct 16th, 2019

Review

- 1. Let $A, B \in \mathbb{R}^{m \times n}$. For each one of the subsets of \mathbb{R}^n below say whether it is a subspace of \mathbb{R}^n and justify your answer:
 - 1. $E_1 = \{x \in \mathbb{R}^n \mid Ax = 0\}$
 - 2. $E_2 = \{x \in \mathbb{R}^n \mid Ax = Bx\}$
 - 3. $E_3 = \{x \in \mathbb{R}^n \mid Ax = e_1\}$
 - 4. $E_4 = \{x \in \mathbb{R}^n \mid Ax \in span(e_1)\}$
 - 5. $E_5 = \{x \in \mathbb{R}^n \mid \sum_{i=0}^n (Ax)_i = 0\}$
- 2. Let n > m and let $A \in \mathbb{R}^{n \times m}$. Assume that A is full rank meaning that $rank(A) = \min(m, n) = m$.
 - 1. Does Ax = b has a solution $\forall b \in \mathbb{R}^n$
 - 2. True or False: $\exists b \in \mathbb{R}^n$ for which there exists two distinct solutions $x \neq x'$ such that Ax = Ax' = b

Review

- 1. Let $A \in \mathbb{R}^{m \times n}$
 - 1. Prove that $Ker(A^T)$ and Im(A) are orthogonal to each other
 - 2. This raises the question: Is $Ker(A^T) = Im(A)^{\perp}$
- 2. True or False:
 - 1. There can exist a set of n non-zero orthogonal vectors in \mathbb{R}^m if n > m
 - 2. The matrix corresponding to an orthogonal projection is symmetric
 - 3. The matrix corresponding to an orthogonal projection is orthogonal
 - 4. For any subspace S of \mathbb{R}^n , the orthogonal projection matrix onto S is unique
- 3. Let S be a subspace of \mathbb{R}^n and let P_S be an orthogonal projection onto S. Show that $\dim(S) = Tr(P_S)$