Recitation Solutions - Week 6

Ashwin Bhola

CDS, NYU

Oct 9th , 2019

- 1. Prove that the product of two stochastic matrices is a stochastic matrix
- 2. Let $A \in R^{n \times n}$ be a stochastic matrix. True or False:
	- 1. A is always invertible
	- 2. The eigenvector corresponding to the largest eigenvalue of A is unique
	- 3. A cannot have zero as its eigenvalue
- 3. Let $A \in \mathbb{R}^{n \times n}$ be a stochastic matrix. Prove that the absolute value of any eigenvalue of A is ≤ 1

1. Prove that the product of two stochastic matrices is a stochastic matrix

Solution: Let P_1 and P_2 be the two stochastic matrices

- 1. $P_1 P_2[i, j] = P_1[i, :] P_2[:, j] \ge 0$
- 2. $[1, ..., 1]P_1P_2 = [1, ..., 1]P_2 = [1, ..., 1]$ proving that sum of entries in all columns of P_1P_2 is 1

2. Let $A \in R^{n \times n}$ be a stochastic matrix. True or False:

- 1. A is always invertible
- 2. The eigenvector corresponding to the largest eigenvalue of A is unique
- 3. A cannot have zero as its eigenvalue

Solution:

- i. False. $A =$ 1 1 0 0
- ii. False, A=Identity matrix

iii. False,
$$
A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}
$$

3. Let $A \in \mathbb{R}^{n \times n}$ be a stochastic matrix. Prove that the absolute value of any eigenvalue of A is ≤ 1 Solution: For any x such that $Ax = \lambda x$

$$
\left| |Ax| \right|_1 = \sum_i \left| \sum_j A_{ij} x_j \right| \le \sum_i \sum_j |A_{ij} x_j|
$$

A is a stochastic matrix

$$
\Rightarrow ||Ax||_1 \le \sum_i \sum_j A_{ij} |x_j| = \sum_j |x_j| \sum_i A_{ij} = \sum_j |x_j| = ||x||_1
$$

$$
\Rightarrow | \lambda | ||x||_1 \le ||x||_1
$$

$$
\Rightarrow |\lambda| \le 1
$$

- 1. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Give a vector v with $||v|| = 1$ such that $||Av||$ is maximized
- 2. A symmetric matrix $M \in \mathbb{R}^{n \times n}$ is said to be positive definite if all of its eigenvalues are greater than zero. Prove that $x^T M x > 0$ for a symmetric positive definite matrix $M \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$
- 3. Suppose S and T are symmetric and positive definite (all eigenvalues greater than zero)
	- 1. True or False: ST will always be symmetric
	- 2. Prove that all eigenvalues of ST are still positive

1. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Give a vector v with $||v|| = 1$ such that $||Av||$ is maximized Solution: By spectral theorem, I can write A as $A = UDU^T$ where the columns of U (namely $u_1, ..., u_n$) form an orthonormal basis of A and let the diagonal entries in D be d_1, \ldots, d_n

Let
$$
v = \alpha_1 u_1 + \dots + \alpha_n u_n
$$
 such that $\sqrt{\alpha_1^2 + \dots + \alpha_n^2} = 1$
\n
$$
Av = UDU^T v = \alpha_1 d_1 u_1 + \dots + \alpha_n d_n u_n
$$

$$
\Rightarrow ||Av|| = \sqrt{\alpha_1^2 d_1^2 + \dots + \alpha_n d_n^2}
$$

Let $d_k^2 = \max\{d_1^2, ..., d_n^2\}$

$$
\Rightarrow ||Av|| = |d_k| \sqrt{\alpha_1^2 \left(\frac{d_1}{d_k}\right)^2 + \dots + \alpha_n^2 \left(\frac{d_n}{d_k}\right)^2} \le |d_k| \sqrt{\alpha_1^2 + \dots + \alpha_n^2} = |d_k|
$$

 \Rightarrow $||Av|| \leq |d_k|$ and the maximum is achieved for $v = u_k$

2. A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is said to be positive definite if all of its eigenvalues are greater than zero. Prove that $x^T A x > 0$ for a symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$

Solution: Following the notation from previous question,

 $Ax = \alpha_1 d_1 u_1 + \cdots + \alpha_n d_n u_n$ $\Rightarrow x^T A x = \alpha_1^2 d_1 + \dots + \alpha_n^2 d_n > 0$ since $d_1, ..., d_n > 0$

3. Suppose S and T are symmetric and positive definite (all eigenvalues greater than zero)

- 1. True or False: Product of two symmetric matrices is always symmetric
- 2. Prove that all eigenvalues of ST are still positive

Solution:

1.
$$
S_1 = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}
$$
, $S_2 = \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix} \Rightarrow S_1 S_2 = \begin{bmatrix} 7 & 7 \\ 5 & 8 \end{bmatrix}$ (Not symmetric)

2. Let x be an eigenvector of ST corresponding to eigenvalue $\lambda \Rightarrow STx = \lambda x$

$$
\Rightarrow (Tx)^T STx = \lambda (Tx)^T x
$$

$$
\Rightarrow x^T T^T STx = \lambda x^T Tx
$$

 $\Rightarrow \lambda = v^T S v / x^T T x$ where $v = Tx$

Since S and T are positive definite, $x^T T x > 0$ and $v^T S v > 0$

 $\Rightarrow \lambda > 0$