Recitation - Week 6

Ashwin Bhola

CDS, NYU

Oct 9th , 2019

Stochastic matrices

- 1. Prove that the product of two stochastic matrices is a stochastic matrix
- 2. Let $A \in \mathbb{R}^{n \times n}$ be a stochastic matrix. True or False:
 - 1. A is always invertible
 - 2. The eigenvector corresponding to the largest eigenvalue of A is unique
 - 3. A cannot have zero as its eigenvalue
- 3. Let $A \in \mathbb{R}^{n \times n}$ be a stochastic matrix. Prove that the absolute value of any eigenvalue of A is ≤ 1

Spectral decomposition

- 1. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Give a vector v with ||v|| = 1 such that ||Av|| is maximized
- 2. A symmetric matrix $M \in \mathbb{R}^{n \times n}$ is said to be positive definite if all of its eigenvalues are greater than zero. Prove that $x^T M x > 0$ for a symmetric positive definite matrix $M \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$
- 3. Suppose S and T are symmetric and positive definite (all eigenvalues greater than zero)
 - 1. True or False: Product of two symmetric matrices will always be symmetric
 - 2. Prove that all eigenvalues of ST are still positive