Recitation - Week 5

Ashwin Bhola

CDS, NYU

Oct 2nd , 2019

- 1. Let $A \in \mathbb{R}^{n \times n}$. Suppose that A has an eigenvalue λ with eigenvector $v \in \mathbb{R}^n$ associated to λ . Prove that
 - *i.* $\forall \alpha \in \mathbb{R}, \lambda + \alpha$ is an eigenvalue of the matrix $A + \alpha I_{n \times n}$ with corresponding eigenvector v
 - *ii.* $\forall k \in \mathbb{N}, \lambda^k$ is an eigenvalue of the matrix A^k with corresponding eigenvector v
- 2. Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m \times m}$ and $C \in \mathbb{R}^{n \times n}$. Prove that if B and C are invertible, then rank(A)=rank(BAC). What does this say about rank of any diagonalizable matrix $X \in \mathbb{R}^{n \times n}$? Prove that $Tr(X) = \sum_i \lambda_i$ where λ_i are the eigenvalues of X.
- 3. Let $v_1, ..., v_k$ be the eigenvectors of A corresponding respectively to eigenvalues $\lambda_1, ..., \lambda_k$ such that all λ_i are distinct (assume that $\lambda_1 > \lambda_2 > \cdots > \lambda_k$). Prove the eigenvectors $v_1, ..., v_k$ are linearly independent

- 1. Let $A \in \mathbb{R}^{n \times n}$. Suppose that A has an eigenvalue λ with eigenvector $v \in \mathbb{R}^n$ associated to λ . Prove that
 - *i.* $\forall \alpha \in \mathbb{R}, \lambda + \alpha$ is an eigenvalue of the matrix $A + \alpha I_{n \times n}$ with corresponding eigenvector v
 - *ii.* $\forall k \in \mathbb{N}, \lambda^k$ is an eigenvalue of the matrix A^k with corresponding eigenvector v

Solution:

- i. $(A + \alpha I)v = Av + \alpha Iv = \lambda v + \alpha v = (\lambda + \alpha)v$
- *ii.* $A^k v = A.A...A(v)$ (A multiplied k times)
- $\Rightarrow A^k v = A.A \dots A(Av) = A \dots A(\lambda v) = \lambda A^{k-1} v = \lambda A^{k-2} Av = \lambda^2 A^{k-2} v = \dots = \lambda^k v$

2. Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m \times m}$ and $C \in \mathbb{R}^{n \times n}$. Prove that if B and C are invertible, then rank(A)=rank(BAC). What does this say about rank of any diagonalizable matrix $X \in \mathbb{R}^{n \times n}$? Prove that $Tr(X) = \sum_i \lambda_i$ where λ_i are the eigenvalues of X

Solution:

From HW3, we know that if M is an invertible matrix, then rank(MA)=rank(A) and rank(AM)=A. Since B and C are invertible matrices, we can use these 2 results on BAC

$$\Rightarrow Rank(BAC) = Rank(B(AC)) = rank(AC) = rank(A)$$

Since X is an invertible matrix,

 $X = PDP^{-1}$ $\Rightarrow rank(X) = rank(D)$

Also, from HW3, we know that Tr(AB)=Tr(BA)

$$\Rightarrow Tr(X) = Tr(PDP^{-1}) = Tr(P^{-1}PD) = Tr(D) = \sum_{i} \lambda_{i}$$

Ashwin Bhola (CDS, NYU)

3. Let $v_1, ..., v_k$ be the eigenvectors of A corresponding respectively to eigenvalues $\lambda_1, ..., \lambda_k$ such that all λ_i are distinct (assume that $\lambda_1 > \lambda_2 > \cdots > \lambda_k$). Prove the eigenvectors $v_1, ..., v_k$ are linearly independent Solution:

Let's take matrix $B = A + |\lambda_k|I$. We know that the eigenvalues of matrix B are the eigenvalues of A shifted by $|\lambda_k| \Rightarrow \gamma_i = \lambda_i + |\lambda_k|$ are the eigenvalues of matrix B for $i \in [1, k]$. We do this so that all eigenvalues are non-negative. To check that $v_1, ..., v_k$ are linearly independent,

$$\alpha_1 v_1 + \dots + \alpha_k v_k = 0$$

$$\Rightarrow B^p (\alpha_1 v_1 + \dots + \alpha_k v_k) = 0$$

$$\Rightarrow \alpha_1 B^p v_1 + \dots + \alpha_k B^p v_k = 0$$

$$\Rightarrow \gamma_1^p (\alpha_1 v_1 + \alpha_2 \left(\frac{\gamma_2}{\gamma_1}\right)^p v_2 + \dots + \alpha_k \left(\frac{\gamma_k}{\gamma_1}\right)^p v_k) = 0$$

$$\Rightarrow \alpha_1 v_1 + \alpha_2 \left(\frac{\gamma_2}{\gamma_1}\right)^p v_2 + \dots + \alpha_k \left(\frac{\gamma_k}{\gamma_1}\right)^p v_k = 0$$

$$\frac{\gamma_i}{\gamma_1} < 1 \forall i \in [2, k]$$

Taking $\lim_{p \to \infty} \left(\alpha_1 v_1 + \alpha_2 \left(\frac{\gamma_2}{\gamma_1} \right)^p v_2 + \dots + \alpha_k \left(\frac{\gamma_k}{\gamma_1} \right)^p v_k \right) = 0$
 $\Rightarrow \alpha_1 v_1 = 0$

Now since eigenvector cannot be a zero vector, $\alpha_1 = 0$

Now we are left with $\alpha_2 v_2 + \cdots + \alpha_k v_k = 0$. We can multiply this with B^p and do the same exact procedure as above but this time, we divide the equation with γ_2^p instead of γ_1^p . This results in $\alpha_2 = 0$. Keep on doing this and at the end you'll be left with $\alpha_k v_k = 0$ which directly gives $\alpha_k = 0$. Thus, now you have $\alpha_1 v_1 + \cdots + \alpha_k v_k = 0$ possible only if $\alpha_1 = \cdots = \alpha_k = 0$

Gram-Schmidt

- 1. Let $A \in \mathbb{R}^{m \times n}$ have linearly independent columns. Show that there is a matrix $Q \in \mathbb{R}^{m \times n}$ and $R \in \mathbb{R}^{n \times n}$ such that A=QR, Q has orthonormal columns and R is upper triangular
- 2. Suppose $D \in \mathbb{R}^{n \times n}$ is diagonal. Give a vector $v \in \mathbb{R}^n$ with ||v|| = 1 such that ||Dv|| is maximized

Gram-Schmidt

Let A ∈ ℝ^{m×n} have linearly independent columns. Show that there is a matrix Q ∈ ℝ^{m×n} and R ∈ ℝ^{n×n} such that A=QR, Q has orthonormal columns and R is upper triangular
 Solution:

Let the columns of A be $a_1, ..., a_n$. We pass them through Gram-Schmidt and get as output a set of orthonormal vectors $u_1, ..., u_n$. Because we used Gram-Schmidt we know that $span(a_1, ..., a_i) = span(u_1, ..., u_i) \Rightarrow a_i \in span(u_1, ..., u_i) \forall i \in [1, n]$

$$\Rightarrow a_i = \lambda_{1i}u_1 + \dots + \lambda_{ii}u_i$$

Now since A is a matrix of $a_1, ..., a_n$, I can construct the matrix Q such that the columns of Q are $u_1, ..., u_n$. The matrix R is then an upper triangular matrix constructed using the coefficients λ_{ij}

Gram-Schmidt

2. Suppose $D \in \mathbb{R}^{n \times n}$ is diagonal. Give a vector $v \in \mathbb{R}^n$ with ||v|| = 1 such that ||Dv|| is maximized Solution:

Let the diagonal of D consist of d_1, d_2, \dots, d_n and $v = (v_1, \dots, v_n)$. Then

$$\begin{aligned} \left| |Dv| \right| &= \sqrt{d_1^2 v_1^2 + \dots + d_n^2 v_n^2} = \sqrt{d_i^2 \left[\left(\frac{d_1}{d_i} \right)^2 v_1^2 + \dots + \left(\frac{d_n}{d_i} \right)^2 v_n^2 \right]} \text{ where } d_i^2 &= \max(d_1^2, \dots, d_n^2) \end{aligned}$$

$$\Rightarrow \left| |Dv| \right| &= \sqrt{d_i^2 \left[\left(\frac{d_1}{d_i} \right)^2 v_1^2 + \dots + \left(\frac{d_n}{d_i} \right)^2 v_n^2 \right]} = |d_i| \sqrt{\left(\frac{d_1}{d_i} \right)^2 v_1^2 + \dots + \left(\frac{d_n}{d_i} \right)^2 v_n^2} \le |d_i| \sqrt{v_1^2 + \dots + v_n^2} \end{aligned}$$

$$\Rightarrow \left| |Dv| \right| = \sqrt{d_i^2 \left[\left(\frac{d_1}{d_i} \right)^2 v_1^2 + \ldots + \left(\frac{d_n}{d_i} \right)^2 v_n^2 \right]} = |d_i| \sqrt{\left(\frac{d_1}{d_i} \right)^2 v_1^2 + \ldots + \left(\frac{d_n}{d_i} \right)^2 v_n^2} \le |d_i| \sqrt{v_1^2 + \cdots + v_n^2}$$

Since $||v|| = 1$,

 $||Dv|| \le |d_i|$

Now the question is if this maximum is achievable

I can take v as vector of all zeros but 1 at the i^{th} position to see that $||Dv|| = |d_i|$, proving that this maxima is indeed possible to get to

Ashwin Bhola (CDS, NYU)