Recitation - Week 5

Ashwin Bhola

CDS, NYU

Oct 2nd , 2019

Eigenvalues and diagonalizable matrices

- 1. Let $A \in \mathbb{R}^{n \times n}$. Suppose that A has an eigenvalue λ with eigenvector $v \in \mathbb{R}^n$ associated to λ . Prove that
 - *i.* $\forall \alpha \in \mathbb{R}, \lambda + \alpha$ is an eigenvalue of the matrix $A + \alpha I_{n \times n}$ with corresponding eigenvector v
 - *ii.* $\forall k \in \mathbb{N}, \lambda^k$ is an eigenvalue of the matrix A^k with corresponding eigenvector v
- 2. Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m \times m}$ and $C \in \mathbb{R}^{n \times n}$. Prove that if B and C are invertible, then rank(A)=rank(BAC). What does this say about rank of any diagonalizable matrix $X \in \mathbb{R}^{n \times n}$? Prove that $Tr(X) = \sum_i \lambda_i$ where λ_i are the eigenvalues of X.
- 3. Let $v_1, ..., v_k$ be the eigenvectors of A corresponding respectively to eigenvalues $\lambda_1, ..., \lambda_k$ such that all λ_i are distinct (assume that $\lambda_1 > \lambda_2 > \cdots > \lambda_k$). Prove the eigenvectors $v_1, ..., v_k$ are linearly independent

Gram-Schmidt

- 1. Let $A \in \mathbb{R}^{m \times n}$ have linearly independent columns. Show that there is a matrix $Q \in \mathbb{R}^{m \times n}$ and $R \in \mathbb{R}^{n \times n}$ such that A=QR, Q has orthonormal columns and R is upper triangular
- 2. Suppose $D \in \mathbb{R}^{n \times n}$ is diagonal. Give a vector $v \in \mathbb{R}^n$ with ||v|| = 1 such that ||Dv|| is maximized