Recitation - Week 4

Ashwin Bhola

CDS, NYU

Sept 25th , 2019

- 1. Suppose $v_1, \ldots, v_m \in \mathbb{R}^k$ are m non-zero orthogonal vectors. Prove that they are linearly independent.
- 2. Let U be the subspace of \mathbb{R}^n with orthonormal basis $u_1, ..., u_k$.
	- i. Prove that the projection of $x \in \mathbb{R}^n$ can be expressed as $P_U(x) = \langle u_1, x \rangle u_1 + \langle u_2, x \rangle u_2 + ... + \langle u_n, x \rangle u_n$ $u_k, x > u_k$ (Use the fact that the orthonormal basis for a subspace of \mathbb{R}^n can be extended to obtain an orthonormal basis for \mathbb{R}^n)
	- ii. Prove that $||P_U(x)|| \le ||x||$
	- iii. Prove that $x P_U(x)$ is orthogonal to the subspace U
	- iv. Show that the linear transformation $P_U: \mathbb{R}^n \to \mathbb{R}^n$ satisfies $P_U^2 = P_U$ and $P_U^T = P_U$

1. Suppose $v_1, \ldots, v_m \in \mathbb{R}^k$ are m non-zero orthogonal vectors. Prove that they are linearly independent. Solution:

To check if they are linearly independent, we need to calculate $\alpha \in \mathbb{R}^m$ such that

$$
\alpha_1 v_1 + \dots + \alpha_m v_m = 0
$$

For any index $i \in [1, m]$,

$$
\langle \alpha_1 v_1 + \ldots + \alpha_m v_m, v_i \rangle = \langle 0, v_i \rangle = 0
$$

\n
$$
\Rightarrow \alpha_1 < v_1, v_i \rangle + \dots + \alpha_i < v_i, v_i \rangle + \dots + \alpha_m < v_m, v_i \ge 0
$$

\n
$$
\Rightarrow \alpha_i < v_i, v_i \rangle = 0
$$

Since $v_i \neq 0, < v_i, v_i > \neq 0 \Rightarrow \alpha_i = 0$ for all $i \in [1, m]$

2. Let U be the subspace of \mathbb{R}^n with orthonormal basis $u_1, ..., u_k$.

- i. Prove that the projection of $x \in \mathbb{R}^n$ can be expressed as $P_U(x) = \langle u_1, x \rangle u_1 + \langle u_2, x \rangle u_2 + ... + \langle u_n, x \rangle u_n$ $u_k, x > u_k$ (Use the fact that the orthonormal basis for a subspace of \mathbb{R}^n can be extended to obtain an orthonormal basis for \mathbb{R}^n)
- ii. Prove that $||P_U(x)|| \le ||x||$
- iii. Prove that $x P_U(x)$ is orthogonal to the subspace U
- iv. Show that the linear transformation $P_U: \mathbb{R}^n \to \mathbb{R}^n$ satisfies $P_U^2 = P_U$ and $P_U^T = P_U$

Solution: The orthonormal basis of *U is* $u_1, ..., u_k$. This can be extended to form a basis $u_1, ..., u_n$ of \mathbb{R}^n

i.
$$
x = \alpha_1 u_1 + \dots + \alpha_k u_k
$$
 where $\alpha_i = \langle u_i, x \rangle \forall i \in [1, n]$

For projection, we need to solve

$$
P_U(x) = argmin_{y \in U} ||x - y||
$$

Since $y \in U$,

$$
y = \beta_1 u_1 + \dots + \beta_k u_k
$$

\n
$$
||x - y|| = ||(\alpha_1 - \beta_1)u_1 + \dots + (\alpha_k - \beta_k)u_k + \alpha_{k+1}u_{k+1} + \dots + \alpha_n u_n||
$$

\n
$$
\Rightarrow ||x - y|| = \sqrt{(\alpha_1 - \beta_1)^2 + \dots + (\alpha_k - \beta_k)^2 + \alpha_{k+1}^2 + \dots + \alpha_n^2}
$$

This will be minimized when $\beta_i = \alpha_i \ \forall \ i \in [1, k]$

$$
\Rightarrow P_U(x) = \alpha_1 u_1 + \dots + \alpha_k u_k
$$

$$
\Rightarrow P_U(x) = \langle u_1, x \rangle u_1 + \dots + \langle u_k, x \rangle u_k
$$

ii.
$$
||P_U(x)|| = \sqrt{\alpha_1^2 + \dots + \alpha_k^2} \text{ and } ||x|| = \sqrt{\alpha_1^2 + \dots + \alpha_k^2 + \dots + \alpha_n^2} \text{ where } \alpha_i = \langle u_i, x \rangle
$$

$$
\Rightarrow P_U(x) \le ||x||
$$

iii. To show that a vector is orthogonal to a subspace U, it is enough to show that it is orthogonal to the Basis of U

$$
x - P_U(x) = \alpha_{k+1} u_{k+1} + \dots + \alpha_n u_n
$$

For any element u_i of the basis $u_1, ..., u_k$,

$$
\langle u_i, x - P_U(x) \rangle = \langle u_i, a_{k+1}u_{k+1} + \dots + a_n u_n \rangle
$$

= $a_{k+1} \langle u_i, u_{k+1} \rangle + \dots + a_n \langle u_i, u_n \rangle$
= $a_{k+1} \cdot 0 + \dots + a_n \cdot 0$ (given that u_1, \dots, u_n are orthonormal)
= 0

Thus, $\langle x - P_U(x), u_i \rangle = 0 \ \forall i \in [1, ..., k]$

iv. $P_U = VV^T$ where $V = matrix$ with columns $u_1, ..., u_k$ $P_U^2 = P_U P_U = V V^T V V^T$

Now,
$$
V^T V = \begin{bmatrix} \cdots & u_1^T & \cdots \\ & \vdots & \\ \cdots & u_k^T & \cdots \end{bmatrix} \begin{bmatrix} \vdots & & \vdots \\ u_1 & \cdots & u_k^T \\ \vdots & & \vdots \end{bmatrix} = \begin{bmatrix} u_1^T u_1 & \cdots & u_1^T u_n \\ \vdots & & \vdots \\ u_n^T u_1 & \cdots & u_n^T u_n \end{bmatrix} = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 1 \end{bmatrix} = Id_{k \times k}
$$

\n
$$
\Rightarrow P_U^2 = VIV^T = VV^T = P_U
$$

 $P_U^T = (V V^T)^T = V V^T = P_U$

- 1. Which of the following are an inner product for $x, y \in \mathbb{R}^3$:
	- i. $f(x, y) = x_1y_2 + x_2y_3 + x_3y_1$ ii. $f(x, y) = x_1^2 y_1^2 + x_2^2 y_2^2 + x_3^2 y_3^2$ iii. $f(x, y) = x_1 y_1 + x_2 y_2$
- 2. Let $x = (cos\theta_1, sin\theta_1) \in \mathbb{R}^2$ and $y = (cos\theta_2, sin\theta_2) \in \mathbb{R}^2$ be two vectors on unit circle $(||x|| = 1 = ||y||)$. What does $x^T y$ represent geometrically?
- 3. For $x, y \in \mathbb{R}^n$, prove that $||x + y|| \le ||x|| + ||y||$ (Triangular inequality). When does $||x + y|| = ||x|| + ||y||$?
- 4. For any $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$, show that

$$
||Ax|| \le ||x|| \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^2}
$$

1. Which of the following are an inner product for $x, y \in \mathbb{R}^3$:

i.
$$
f(x, y) = x_1y_2 + x_2y_3 + x_3y_1
$$

ii. $f(x, y) = x_1^2 y_1^2 + x_2^2 y_2^2 + x_3^2 y_3^2$

iii.
$$
f(x, y) = x_1y_1 + x_2y_2
$$

Solution:

- i. Not an inner product. Take $x = y = (1, -1, 0)$; $f(x, x) = -1 < 0$
- ii. Not an inner product: $f(\alpha x, y) = \alpha^2 f(x, y) \neq \alpha f(x, y)$
- iii. Not an inner product: Take $x = y = (0,0,-1) \Rightarrow f(x,x) = 0$ and $x \neq 0$

2. Let $x = (cos\theta_1, sin\theta_1) \in \mathbb{R}^2$ and $y = (cos\theta_2, sin\theta_2) \in \mathbb{R}^2$ be two vectors on unit circle ($||x|| = 1 = ||y||$). What does $x^T y$ represent geometrically?

Solution:

$$
x^T y = \cos\theta_2 \cos\theta_1 + \sin\theta_2 \sin\theta_1
$$

$$
\Rightarrow x^T y = \cos(\theta_2 - \theta_1)
$$

3. For $x, y \in \mathbb{R}^n$, prove that $||x + y|| \le ||x|| + ||y||$ (Triangular inequality). When does $||x + y|| = ||x|| + ||y||$? Solution:

$$
||x + y||2 = = + + + \Rightarrow
$$

$$
\Rightarrow ||x + y||2 = ||x||2 + ||y||2 + 2 \Rightarrow
$$

Using Cauchy-Schwarz inequality,

$$
\Rightarrow ||x + y||^{2} \le ||x||^{2} + ||y||^{2} + 2||x|| ||y||
$$

$$
\Rightarrow ||x + y||^{2} \le (||x|| + ||y||)^{2}
$$

Since norms are always positive,

$$
||x + y|| \le ||x|| + ||y||
$$

For equality to hold, we should have equality in Cauchy-Shwarz i.e. $||x|| ||y|| = < x, y >$ which is true iff x and y are collinear

4. For any $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$, show that

$$
|Ax|| \leq ||x|| \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^2}
$$

Solution: Let $a_1^T,...$, a_m^T be the columns of A

$$
||Ax||^2 = (a_1^T x)^2 + (a_2^T x)^2 + \dots + (a_m^T x)^2
$$

Using Cauchy-Schwarz,

$$
||Ax||^{2} \le ||a_{1}||^{2}||x||^{2} + \dots + ||a_{m}||^{2}||x||^{2}
$$

\n
$$
\Rightarrow ||Ax|| \le (||a_{1}||^{2}||x||^{2} + \dots + ||a_{m}||^{2}||x||^{2})^{0.5}
$$

\n
$$
\Rightarrow ||Ax|| \le ||x|| (||a_{1}||^{2} + \dots + ||a_{m}||^{2})^{0.5}
$$

\nSince a_{1}^{T} , ..., a_{m}^{T} are rows of A, $||a_{i}||^{2} = a_{i,1}^{2} + \dots + a_{i,n}^{2}$ assuming $a_{i} = [a_{i,1},...,a_{i,n}]$
\n
$$
\Rightarrow ||Ax|| \le ||x|| \left(\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^{2}\right)^{0.5}
$$