Recitation - Week 4

Ashwin Bhola

CDS, NYU

Sept 25th , 2019

Projections

- 1. Suppose $v_1, \ldots, v_m \in \mathbb{R}^k$ are m non-zero orthogonal vectors. Prove that they are linearly independent.
- 2. Let U be the subspace of \mathbb{R}^n with orthonormal basis u_1, \ldots, u_k .
 - i. Prove that the projection of $x \in \mathbb{R}^n$ can be expressed as $P_U(x) = \langle u_1, x \rangle u_1 + \langle u_2, x \rangle u_2 + \dots + \langle u_k, x \rangle u_k$ (Use the fact that the orthonormal basis for a subspace of \mathbb{R}^n can be extended to obtain an orthonormal basis for \mathbb{R}^n)
 - ii. Prove that $||P_U(x)|| \le ||x||$
 - iii. Prove that $x P_U(x)$ is orthogonal to the subspace U
 - iv. Show that the linear transformation $P_U: \mathbb{R}^n \to \mathbb{R}^n$ satisfies $P_U^2 = P_U$ and $P_U^T = P_U$

Norm and inner product

- 1. Which of the following are an inner product for $x, y \in \mathbb{R}^3$:
 - *i.* $f(x, y) = x_1y_2 + x_2y_3 + x_3y_1$ *ii.* $f(x, y) = x_1^2y_1^2 + x_2^2y_2^2 + x_3^2y_3^2$

iii. $f(x, y) = x_1y_1 + x_2y_2$

- 2. Let $x = (cos\theta_1, sin\theta_1) \in \mathbb{R}^2$ and $y = (cos\theta_2, sin\theta_2) \in \mathbb{R}^2$ be two vectors on unit circle (||x|| = 1 = ||y||). What does $x^T y$ represent geometrically?
- 3. For $x, y \in \mathbb{R}^n$, prove that $||x + y|| \le ||x|| + ||y||$ (Triangular inequality). When does ||x + y|| = ||x|| + ||y||?
- 4. For any $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^{n}$, show that

$$||Ax|| \le ||x|| \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^2}$$