Recitation Week 14

Ashwin Bhola

CDS, NYU

Dec 4th , 2019

Gradient Descent

- 1. Given N training points $\{(x_k, y_k)\}_{k=1}^N, x_k \in \mathbb{R}^d, y_k \in \{-1, 1\}$, we seek a linear discriminant function $f(x) = w^T x$
 - i. Suggest a method for determining if the points are perfectly linearly separable
 - ii. Let's say we decide to take the loss function as the exponential loss, $L(y, f(x)) = e^{-z}$, where z is defined to be the

margin, z = yf(x), y being the label of x and f(x) being our prediction on x. Derive the update rule for batch

gradient descent for exponential loss. What's the computational cost of this update in terms of N and d?

- iii. The step size in gradient descent is not actual "step size" because the true length of the step in gradient descent will be $\alpha ||\nabla_w J(w)||$. Someone suggests that we should scale the gradients to make them unit norm before we do gradient descent. What's the problem with this?
- iv. What are the different possible stopping criteria for gradient descent algorithm?

Gradient Descent

Gradient Descent

- i. If there exists $w \in \mathbb{R}^d$ such that $y_i w^T x_i > 0 \forall i$, then the points are linearly separable
- *ii.* $J(w) = \Sigma_i L(y_i, f(x_i)) = \Sigma_i e^{-y_i w^T x_i}$

$$w_{t+1} = w_t - \alpha \nabla J(w)$$

$$\nabla J(w) = \sum_{i}^{i} (-y_i x_i) e^{-y_i w^T x_i}$$

$$\Rightarrow w_{t+1} = w_t + \alpha \sum_{i}^{i} y_i x_i e^{-y_i w^T x_i}$$

- iii. If you normalize the gradient every time, you'll lose the advantage of decreasing step size unless you schedule α to also decrease as you approach the minimum
- iv. You can continue doing gradient for predetermined number of iterations or choose one of these: $||w_{t+1} w_t|| < \epsilon$, $|J(w_{t+1}) J(w_t)| < \epsilon$, $||\nabla J(w)|| < \epsilon$. $|J(w_{t+1}) J(w_t)| < \epsilon$ is preferred

Optimality conditions

- 1. Consider *f* to be twice differentiable function. True or False:
 - i. For a convex function, the first order Taylor approximation at any point is a global under estimator of the function
 - ii. Convex functions do not have saddle points
 - iii. For x to be a local minimum of a function f(x), $\nabla f(x) = 0$ and $H_f(x) > 0$
 - iv. The necessary and sufficient condition for local optimality in unconstrained convex optimization is $\nabla f(x) = 0$
 - v. The necessary and sufficient condition for local optimality in unconstrained optimization is $\nabla f(x) = 0$
 - vi. For convex functions, the direction of steepest descent is same as the direction towards global optima

vii. $e^y \ge 1 + y$

viii. Standardizing data does not help gradient descent

Optimality conditions

- 1. Consider *f* to be twice differentiable function. True or False:
 - i. True: $f(y) \ge f(x) + \nabla f(x)^T (y x)$
 - ii. True: If $\nabla f(x) = 0$, and f is a convex function, then x is the minimizer
 - iii. False: x^4
 - iv. True
 - v. False: You need second order conditions
 - vi. False
 - vii. True: Use part i

viii. False: Standardizing brings all eigenvalues of covariance matrix to the same scale