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Gradient Descent

1. Given N training points 𝑥", 𝑦" "%&
' , 𝑥" ∈ ℝ*, 𝑦" ∈ {−1,1}, we seek a linear discriminant function 𝑓 𝑥 = 𝑤2𝑥

i. Suggest a method for determining if the points are perfectly linearly separable

ii. Let’s say we decide to take the loss function as the exponential loss, 𝐿 𝑦, 𝑓(𝑥) = 𝑒78, where z is defined to be the 

margin, 𝑧 = 𝑦𝑓(𝑥), y being the label of x and 𝑓(𝑥) being our prediction on x. Derive the update rule for batch 

gradient descent for exponential loss. What’s the computational cost of this update in terms of N and d? 

iii. The step size in gradient descent is not actual “step size” because the true length of the step in gradient descent will 

be 𝛼| ∇=𝐽 𝑤 |. Someone suggests that we should scale the gradients to make them unit norm before we do 

gradient descent. What’s the problem with this?

iv. What are the different possible stopping criteria for gradient descent algorithm?



Ashwin Bhola (CDS, NYU) DS-GA 1014 Dec 4, 2019 

Gradient Descent

𝑤2𝑥 = 𝑎

𝑤2𝑥 ≥ 𝑎

𝑤2𝑥 ≤ 𝑎
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Gradient Descent

i. If there exists 𝑤 ∈ ℝ* such that yC𝑤2𝑥D > 0 ∀ 𝑖, then the points are linearly separable

ii. 𝐽 𝑤 = ΣD𝐿 𝑦D, 𝑓 𝑥D = ΣD𝑒7LM=
NOM

𝑤PQ& = 𝑤P − 𝛼∇𝐽(𝑤)
∇𝐽 𝑤 =R

D

−𝑦D𝑥D 𝑒7LM=
NOM

⇒ 𝑤PQ& = 𝑤P + 𝛼R
D

𝑦D𝑥D𝑒7LM=
NOM

iii. If you normalize the gradient every time, you’ll lose the advantage of decreasing step size unless you schedule 𝛼 to also 

decrease as you approach the minimum

iv. You can continue doing gradient for predetermined number of iterations or choose one of these: 𝑤PQ& − 𝑤P <

𝜖, 𝐽 𝑤PQ& − 𝐽 𝑤P < 𝜖, ∇𝐽 𝑤 < 𝜖. 𝐽 𝑤PQ& − 𝐽 𝑤P < 𝜖 is preferred
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Optimality conditions

1. Consider 𝑓 to be twice differentiable function. True or False:

i. For a convex function, the first order Taylor approximation at any point is a global under estimator of the function

ii. Convex functions do not have saddle points

iii. For x to be a local minimum of a function 𝑓(𝑥), ∇𝑓 𝑥 = 0 𝑎𝑛𝑑 HZ 𝑥 ≻ 0

iv. The necessary and sufficient condition for local optimality in unconstrained convex optimization is ∇𝑓 𝑥 = 0

v. The necessary and sufficient condition for local optimality in unconstrained optimization is ∇𝑓 𝑥 = 0

vi. For convex functions, the direction of steepest descent is same as the direction towards global optima

vii. 𝑒L ≥ 1 + 𝑦

viii. Standardizing data does not help gradient descent
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Optimality conditions

1. Consider 𝑓 to be twice differentiable function. True or False:

i. True: 𝑓 𝑦 ≥ 𝑓 𝑥 + ∇𝑓 𝑥 2(𝑦 − 𝑥)

ii. True: 𝐼𝑓 ∇𝑓 𝑥 = 0, and f is a convex function, then x is the minimizer

iii. False: 𝑥^

iv. True

v. False: You need second order conditions

vi. False

vii. True: Use part i

viii. False: Standardizing brings all eigenvalues of covariance matrix to the same scale


