Recitation Week 12

Ashwin Bhola

CDS, NYU

Nov 20th , 2019

Linear Regression

- 1. When solving the least squares problem, the optimization problem is: $\min_{x} ||Ax b||^2$
 - 1. Geometrically, what does this mean?
 - 2. How can we obtain the equation $A^T A x = A^T b$ from this geometric intuition?
 - 3. If $\mathbf{x} = P_{Im(A)}b$, what is $P_{Im(A)}$?
 - 4. Under what conditions is $A^T A$ invertible? If $A^T A$ is not invertible, must the normal equations still have a solution?
 - 5. The objective of linear regression is to find a hyperplane of the form $f(x) = w_0 + w^T x = w_0 + w_1 x_1 + \cdots + w_d x_d$. Solving least squares gives us $w \in \mathbb{R}^d$. How do we find $w_0 \in \mathbb{R}$?
 - 6. One of the things we expect from machine learning models is regularity in prediction i.e. neighboring points in feature space should have similar prediction. How does regularization induce this regularity?
 - 7. In ridge regression, we add a penalty $\lambda ||x||_2^2$. Is it better than adding $\lambda ||x||_2^2$?
 - 8. What are the disadvantages of using lasso regularization?

Linear Regression

1. Let $b \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times 2}$ have the form

$$A = \begin{bmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_n \end{bmatrix}$$

Let $x \in \mathbb{R}^2$ be the minimizer of the least squares objective function $\min_{x} ||Ax - b||^2$. Prove that $\sum_{i=1}^n (Ax - b)_i = 0$

2. Suppose $M \in \mathbb{R}^{2 \times 2}$ has positive eigenvalues. Describe geometrically the contour lines of $f : \mathbb{R}^2 \to \mathbb{R}$ given by $f(x) = x^T M x$. Recall that the contour line for value γ is given by $\{x \in \mathbb{R}^2 \mid f(x) = \gamma\}$

Linear Regression

Suppose $A \in \mathbb{R}^{n \times 2}$ is your data matrix. The empirical risk or the least squares loss is given by $R(w) = ||Aw - y||^2$. Suppose

 $\widehat{w} = argmin_w R(w)$. Let $M = A^T A \in \mathbb{R}^{2 \times 2}$ be invertible. It can be easily verified that

$$x^{T}Mx - 2b^{T}x = (x - M^{-1}b)M(x - M^{-1}b) - b^{T}M^{-1}b$$

This leads to $R(w) - R(\widehat{w}) = (w - \widehat{w})^T A^T A(w - \widehat{w})$

Describe geometrically the contour lines of $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(w) = R(w) - R(\widehat{w})$