Recitation Week 11 Solutions

Ashwin Bhola

CDS, NYU

Nov 13th , 2019

1. For $f: \mathbb{R}^n \to \mathbb{R}$, define epigraph $epi(f) \subset \mathbb{R}^{n+1}$ to be set of all the points above the graph of f:

 $epi(f) = \{(x, t) \in \mathbb{R}^{n+1}: t \ge f(x)\}\$

Prove that f is convex if and only if $epi(f)$ is convex

2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be given by $f(x) = x^T A x$ for some symmetric matrix $A \in \mathbb{R}^{n \times n}$. Give conditions on A so that 0 is the global minimizer of f

1. a. If f is convex, then $epi(f)$ is convex

Proof: If epi(f) is convex, then for any two points (x_1, t_1) and $(x_2, t_2) \in epi(f)$, $\theta(x_1, t_1) + (1 - \theta)(x_2, t_2) \in epi(f)$

$$
\Rightarrow (\theta x_1 + (1 - \theta)x_2, \theta t_1 + (1 - \theta)t_2) \in epi(f)
$$

$$
\Rightarrow \theta t_1 + (1 - \theta)t_2 \ge f(\theta x_1 + (1 - \theta)x_2) \text{ (To prove)}
$$

Now it's given that f is convex,

$$
f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2)
$$

\n
$$
\Rightarrow f(\theta x_1 + (1 - \theta)x_2) \le \theta t_1 + (1 - \theta)t_2
$$

which is exactly what we wanted to prove

1. b. If $epi(f)$ is convex, then f is convex

Proof: If epi(f) is convex, then for any two points $(x_1, f(x_1))$ and $(x_2, f(x_2)) \in epi(f)$,

$$
\theta(x_1, f(x_1)) + (1 - \theta)(x_2, f(x_2)) \in epi(f)
$$

\n
$$
\Rightarrow (\theta x_1 + (1 - \theta)x_2, \theta f(x_1) + (1 - \theta)f(x_2)) \in epi(f)
$$

\n
$$
\Rightarrow \theta f(x_1) + (1 - \theta)f(x_2) \ge \theta x_1 + (1 - \theta)x_2
$$

This proves that x is convex

2. If 0 is the global minimizer of f, then $f(x) \ge f(0) \forall x$

 \Rightarrow $f(x) \ge 0 \forall x$ $\Rightarrow x^T A x \geq 0 \,\forall x$

Thus, the only condition on A is that it should be positive semidefinite

- 1. True or False:
	- 1. If f has only 1 global minima and no local minima, then f is convex
	- 2. Linear combination of two convex functions is convex
	- 3. Convex functions are differentiable at all points
	- 4. Norms are convex functions
	- 5. If f is convex, then $g(x) = f(Ax b)$ is also convex in x
	- 6. Sum of a non-convex function (like $cos(x)$) with another function can never be convex
	- 7. Union of convex sets is convex
	- 8. Intersection of convex sets is convex
	- 9. Maximum of two convex functions is convex

10. If f is convex, f^n is also convex for $n \in \mathbb{N}$

1. True or False:

1. False

2. False

3. False

4. True

5. True

6. False

7. False

8. True

9. True

10. False

 $\rightarrow x$

 $\rightarrow x$

 $\rightarrow x$

Multivariable differentiability

We say a function $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at $x \in \mathbb{R}^n$ if

$$
\lim_{h \to 0} \frac{f(x+h) - f(x) - g^{T}h}{||h||_{2}} = 0
$$

for some $g \in \mathbb{R}^n$. Here, h takes values in \mathbb{R}^n . If it exists, this g is unique and is called the gradient of f at x with notation $g = \nabla f(x)$

• The directional derivative $f'(x; v)$ of $f: \mathbb{R}^n \to \mathbb{R}$ at $x \in \mathbb{R}^n$ in the direction $v \neq 0$ is defined by

$$
f'(x; v) = \lim_{t \to 0} \frac{f(x + tv) - f(x)}{t}
$$

assuming the limit exists. If f is differentiable, $f'(x; v) = \nabla f(x)^T v$ (Prove it!)

Multivariable differentiability

1. Let $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable and $\nabla f(x) \neq 0$. Compute the direction of steepest descent and steepest ascent:

$$
arg \min_{\|v\|=1} f'(x; v) \& arg \max_{\|v\|=1} f'(x; v)
$$

Solution:

$$
f'(x; v) = \nabla f(x)^T v = \langle f(x), v \rangle
$$

From HW we know that for fixed u and $||v|| = 1, < u, v$ $>$ is maximized by $v = \frac{u}{||u||}$ and minimized by $v = \frac{-u}{||u||}$

Thus*, arg* min $\nu \vert = 1$ $f'(x; v) = -\frac{\nabla f(x)}{||\nabla f(x)||}$ and $arg\max_{||v||=1}$ $\nu \vert = 1$ $f'(x; v) = \frac{\nabla f(x)}{\ln f(x)}$ $\nabla f(x$