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Convexity

1. For 𝑓:ℝ$ → ℝ, define epigraph 𝑒𝑝𝑖 𝑓 ⊂ ℝ$*+ to be set of all the points above the graph of f:

𝑒𝑝𝑖 𝑓 = { 𝑥, 𝑡 ∈ ℝ$*+: 𝑡 ≥ 𝑓(𝑥)}

Prove that 𝑓 is convex if and only if 𝑒𝑝𝑖(𝑓) is convex

2. Let 𝑓:ℝ$ → ℝ be given by 𝑓 𝑥 = 𝑥6𝐴𝑥 for some symmetric matrix 𝐴 ∈ ℝ$×$. Give conditions on A so that 0 is the 

global minimizer of 𝑓
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Convexity

1. a. If 𝑓 is convex, then 𝑒𝑝𝑖(𝑓) is convex

Proof: If epi(f) is convex, then for any two points (𝑥+, 𝑡+) and 𝑥9, 𝑡9 ∈ 𝑒𝑝𝑖(𝑓), 𝜃 𝑥+, 𝑡+ + 1 − 𝜃 𝑥9, 𝑡9 ∈ 𝑒𝑝𝑖 𝑓

⇒ 𝜃𝑥+ + 1 − 𝜃 𝑥9, 𝜃𝑡+ + 1 − 𝜃 𝑡9 ∈ 𝑒𝑝𝑖(𝑓)

⇒ 𝜃𝑡+ + 1 − 𝜃 𝑡9 ≥ 𝑓 𝜃𝑥+ + 1 − 𝜃 𝑥9 (𝑇𝑜 𝑝𝑟𝑜𝑣𝑒)

Now it’s given that f is convex, 

𝑓 𝜃𝑥+ + 1 − 𝜃 𝑥9 ≤ 𝜃𝑓 𝑥+ + 1 − 𝜃 𝑓(𝑥9)

⇒ 𝑓 𝜃𝑥+ + 1 − 𝜃 𝑥9 ≤ 𝜃𝑡+ + 1 − 𝜃 𝑡9
which is exactly what we wanted to prove



Ashwin Bhola (CDS, NYU) DS-GA 1014 Nov 13, 2019 

Convexity

1. b. If epi(𝑓) is convex, then 𝑓is convex

Proof: If epi(f) is convex, then for any two points (𝑥+, 𝑓(𝑥+)) and 𝑥9, 𝑓(𝑥9) ∈ 𝑒𝑝𝑖(𝑓), 

𝜃 𝑥+, 𝑓(𝑥+) + 1 − 𝜃 𝑥9, 𝑓(𝑥9) ∈ 𝑒𝑝𝑖 𝑓

⇒ 𝜃𝑥+ + 1 − 𝜃 𝑥9, 𝜃𝑓 𝑥+ + 1 − 𝜃 𝑓 𝑥9 ∈ 𝑒𝑝𝑖(𝑓)

⇒ 𝜃𝑓 𝑥+ + 1 − 𝜃 𝑓 𝑥9 ≥ 𝜃𝑥+ + 1 − 𝜃 𝑥9
This proves that x is convex
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Convexity

2. If 0 is the global minimizer of f, then 𝑓 𝑥 ≥ 𝑓 0 ∀ 𝑥

⇒ 𝑓 𝑥 ≥ 0 ∀ 𝑥

⇒ 𝑥6𝐴𝑥 ≥ 0 ∀ 𝑥

Thus, the only condition on A is that it should be positive semidefinite
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Convexity

1. True or False:

1. If f has only 1 global minima and no local minima, then f is convex

2. Linear combination of two convex functions is convex

3. Convex functions are differentiable at all points

4. Norms are convex functions

5. If 𝑓 is convex, then 𝑔 𝑥 = 𝑓(𝐴𝑥 − 𝑏) is also convex in x

6. Sum of a non-convex function (like cos(𝑥)) with another function can never be convex

7. Union of convex sets is convex

8. Intersection of convex sets is convex

9. Maximum of two convex functions is convex

10. If 𝑓 is convex, 𝑓$ is also convex for 𝑛 ∈ ℕ
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Convexity

1. True or False:

1. False

2. False

3. False

4. True

5. True

6. False

7. False

8. True

9. True

10. False
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Convexity

𝑓+(𝑥)

𝑓9(𝑥)

𝑥
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Convexity

𝑓+(𝑥)

𝑓9(𝑥)
max(𝑓+ 𝑥 , 𝑓9(𝑥))

𝑥
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Convexity

𝑓+(𝑥)

𝑓9(𝑥)

𝑥

𝑒𝑝𝑖(𝑓+(𝑥))
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Convexity

𝑓+(𝑥)

𝑓9(𝑥)

𝑥

𝑒𝑝𝑖(𝑓9(𝑥))𝑒𝑝𝑖(𝑓+(𝑥))



Multivariable differentiability

• We say a function 𝑓:ℝ$ → ℝ is differentiable at 𝑥 ∈ ℝ$ if

lim
T→U

𝑓 𝑥 + ℎ − 𝑓 𝑥 − 𝑔6ℎ
ℎ 9

= 0

for some 𝑔 ∈ ℝ$. Here, h takes values in ℝ$. If it exists, this g is unique and is called the gradient of f at x with 

notation 𝑔 = ∇𝑓(𝑥)

• The directional derivative 𝑓′(𝑥; 𝑣) of 𝑓:ℝ$ → ℝ at 𝑥 ∈ ℝ$ in the direction 𝑣 ≠ 0 is defined by

𝑓[ 𝑥; 𝑣 = lim
\→U

𝑓 𝑥 + 𝑡𝑣 − 𝑓(𝑥)
𝑡

assuming the limit exists. If f is differentiable, 𝑓[ 𝑥; 𝑣 = ∇𝑓 𝑥 6𝑣 (Prove it!)
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Multivariable differentiability
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1. Let 𝑓:ℝ$ → ℝ is differentiable and ∇𝑓 𝑥 ≠ 0. Compute the direction of steepest descent and steepest ascent:

𝑎𝑟𝑔 min
_ `+

𝑓′(𝑥; 𝑣) & 𝑎𝑟𝑔m𝑎𝑥
_ `+

𝑓′(𝑥; 𝑣)

Solution:

𝑓[ 𝑥; 𝑣 = ∇𝑓 𝑥 6𝑣 =< 𝑓 𝑥 , 𝑣 >

From HW we know that for fixed 𝑢 and 𝑣 = 1, < 𝑢, 𝑣 > is maximized by 𝑣 = e
e

and minimized by 𝑣 = fe
| e |

Thus, 𝑎𝑟𝑔 min
_ `+

𝑓′(𝑥; 𝑣) = − ∇h(i)
∇h i

and 𝑎𝑟𝑔m𝑎𝑥
_ `+

𝑓′(𝑥; 𝑣) = ∇h(i)
∇h i


