Recitation Week 10

Ashwin Bhola

CDS, NYU

Nov 13th , 2019

Convexity

1. For $f: \mathbb{R}^n \to \mathbb{R}$, define epigraph $epi(f) \subset \mathbb{R}^{n+1}$ to be set of all the points above the graph of f:

$$epi(f) = \{(x,t) \in \mathbb{R}^{n+1} : t \ge f(x)\}$$

Prove that f is convex if and only if epi(f) is convex

2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be given by $f(x) = x^T A x$ for some symmetric matrix $A \in \mathbb{R}^{n \times n}$. Give conditions on A so that 0 is the global minimizer of f

Convexity

- 1. True or False:
 - 1. If f has only 1 global minima and no local minima, then f is convex
 - 2. Linear combination of two convex functions is convex
 - 3. Convex functions are differentiable at all points
 - 4. Norms are convex functions
 - 5. If f is convex, then g(x) = f(Ax b) is also convex in x
 - 6. Sum of a non-convex function (like cos(x)) with another function can never be convex
 - 7. Union of convex sets is convex
 - 8. Intersection of convex sets is convex
 - 9. Maximum of two convex functions is convex
 - 10. If f is convex, f^n is also convex for $n \in \mathbb{N}$
 - 11. Every subspace is a convex set
 - 12. Every convex set is a subspace