Recitation Week 10

Ashwin Bhola

CDS, NYU

Nov 6th , 2019

Rank k approximation

- 1. Let $A \in \mathbb{R}^{m \times n}$ be a matrix such that using SVD, $A = U\Sigma V^T$. Let U_r and V_r denote the first r columns of U and V respectively
 - i. Let $A \in \mathbb{R}^{m \times n}$ be a rank one matrix. Find the value of the square of the its first singular value in terms of entries of A
 - ii. Let's say we have a function f to measure distance between two matrices such that

$$f: X, Y \to \mathbb{R}$$
; $X, Y \in \mathbb{R}^{m \times n}$

How would you formulate the optimization problem to find a rank k matrix A_k which is at minimal distance to A?

- 1. Let $A \in \mathbb{R}^{m \times n}$ be a rectangular matrix such that using SVD, $A = U\Sigma V^T$ and let rank(A) = r. Let U_r and V_r denote the first r columns of U and V respectively
 - 1. Show that A can also be expressed as $A = XY^T$ where $X \in \mathbb{R}^{m \times r}$ and $Y \in \mathbb{R}^{n \times r}$ such that X and Y have orthogonal columns respectively. Is this factorization unique?
 - 2. Computationally, what's the advantage of expressing $A \in \mathbb{R}^{m \times n}$ as $A = XY^T$