Concept check Solutions - Week 2

Ashwin Bhola

CDS, NYU

- 1. Suppose U is a subspace of V with $U \neq V$. Let $S: U \to W$ be a linear transformation and $S \neq 0$ (which means that $Su \neq 0$ for some $u \in U$). Define $T: V \to W$ such that $T(v) = \begin{cases} Sv \ if \ v \in U \\ 0 \ if \ v \in V \ and \ v \notin U \end{cases}$. Prove that T is not a linear map on V
- 2. If $v_1, ..., v_m$ is a list of linearly independent vectors in \mathbb{R}^n , then for any $a \neq 0$ and index i, must $v_1, ..., v_{i-1}, av_i, ..., v_m$ be also linearly independent? Must they have the same span?
- 3. If $v_1, ..., v_m$ is a list of linearly independent vectors in \mathbb{R}^n , then for any $b \neq 0$ and index $i \neq j$, must $v_1, ..., v_{i-1}, v_i + bv_j, ..., v_m$ be also linearly independent? Must they have the same span?
- 4. Find two linearly independent vectors in \mathbb{R}^4 on the plane x + 2y 3z t = 0. Then find three independent vectors? What about four?

1. Suppose U is a subspace of V with $U \neq V$. Let $S: U \rightarrow W$ be a linear transformation and $S \neq 0$ (which means that $Su \neq 0$ for some $u \in U$). Define $T: V \rightarrow W$ such that $T(v) = \begin{cases} Sv \ if \ v \in U \\ 0 \ if \ v \in V \ and \ v \notin U \end{cases}$. Prove that T is not a linear map on V Solution: $Let \ v \in V \ such \ that \ v \notin U \ and \ u \in U$ $\Rightarrow v + u \in V \ and \ v + u \notin U$

$$\Rightarrow v + u \in V \text{ and } v + u \notin l$$

$$\Rightarrow T(v + u) = 0$$

But

$$T(v) = 0 \text{ and } T(u) = Su$$

$$\Rightarrow T(v) + T(u) = Su$$

$$\Rightarrow T(u + v) \neq T(u) + T(v)$$

This proves that T is not a linear transformation

2. If $v_1, ..., v_m$ is a list of linearly independent vectors in \mathbb{R}^n , then for any $a \neq 0$ and index i, must $v_1, ..., v_{i-1}, av_i, ..., v_m$ be also linearly independent? Must they have the same span? Solution: To check if the given set is linearly independent or not:

$$\alpha_1 v_1 + \dots + \alpha_i a v_i + \dots + \alpha_m v_m = 0$$

$$\Rightarrow \alpha_1 v_1 + \dots + (\alpha_i a) v_i + \dots + \alpha_m v_m = 0$$

All coefficients must be zero given that v_1, \ldots, v_m are linearly independent

$$\Rightarrow \alpha_1 = \dots = a\alpha_i = \dots = \alpha_m = 0$$

But we know that $a \neq 0$

 $\Rightarrow \alpha_i = 0 \forall i$

Thus, the set $v_1, \ldots, v_{i-1}, av_i, \ldots, v_m$ is linearly independent By similar method you can prove that they have the same span

3. If $v_1, ..., v_m$ is a list of linearly independent vectors in \mathbb{R}^n , then for any $b \neq 0$ and index $i \neq j$, must $v_1, ..., v_{i-1}, v_i + bv_j, ..., v_m$ be also linearly independent? Must they have the same span? Solution: To check if the given set is linearly independent or not:

$$\alpha_1 v_1 + \dots + \alpha_i (v_i + bv_j) + \dots + \alpha_m v_m = 0$$

$$\Rightarrow \alpha_1 v_1 + \dots + \alpha_i v_i + \dots + v_j (\alpha_j + b\alpha_i) + \dots + \alpha_m v_m = 0$$

All coefficients must be zero given that v_1, \ldots, v_m are linearly independent

$$\Rightarrow \alpha_1 = \dots = \alpha_i = \dots = \alpha_j + b\alpha_i = \dots = \alpha_m = 0$$

But we know that $b \neq 0$

 $\Rightarrow \alpha_i = 0 \forall i$

Thus, the set $v_1, \ldots, v_{i-1}, v_i + bv_j, \ldots, v_m$ is linearly independent By similar method you can prove that they have the same span

4. Find two linearly independent vectors in \mathbb{R}^4 on the plane x + 2y - 3z - t = 0. Then find three independent vectors? What about four? Solution:

For problems like this one, I start by trying to find the general form of vectors in the space. The vectors lying

on this plane will have the form $\begin{bmatrix} x \\ y \\ z \\ x + 2y - 3z \end{bmatrix}$ 2 independent vectors would be: $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 2 \end{bmatrix}$ coordinates (which are independent of each other). So I cannot find 4 independent vectors on the plane

- 5. Suppose v_1, \ldots, v_6 are six vectors in \mathbb{R}^4 . These vectors:
 - (do)(do not)(might not) span \mathbb{R}^4
 - (are)(are not)(might be) linearly independent
 - Any 4 of those vectors (are)(are not)(might be) a basis for \mathbb{R}^4
- 6. Suppose S is a 5 dimensional subspace of \mathbb{R}^6 . True or false (example if false):
 - Every basis for S can be extended to a basis for \mathbb{R}^6 by adding one more vector
 - Every basis for \mathbb{R}^6 can be reduced to a basis for S by removing one vector
- 7. (*)We can think of a permutation of n elements as a linear transformation $P: \mathbb{R}^n \to \mathbb{R}^n$ that permutes the basis elements e_1, \ldots, e_n . In that case it is an $n \times n$ matrix with only 0's and 1's as entries and such that every row and every column have exactly one entry being 1. Is it true that for any n and any permutation P there exists an integer $k \ge 1$ such that $P^k = I$, where I is the identity matrix. Justify your answer.

5. Suppose v_1, \ldots, v_6 are six vectors in \mathbb{R}^4 . These vectors:

- i. (do)(do not)(might not) span \mathbb{R}^4
- ii. (are)(are not)(might be) linearly independent
- iii. Any 4 of those vectors (are)(are not)(might be) a basis for \mathbb{R}^4

Solution:

- i. might not
- ii. Are not
- iii. Might be

6. Suppose S is a 5 dimensional subspace of \mathbb{R}^6 . True or false (example if false):

- i. Every basis for S can be extended to a basis for \mathbb{R}^6 by adding one more vector
- ii. Every basis for \mathbb{R}^6 can be reduced to a basis for S by removing one vector

Solution:

- i. True (HW 1.3)
- ii. False (See recitation of Week 1)

7. (*)We can think of a permutation of n elements as a linear transformation $P: \mathbb{R}^n \to \mathbb{R}^n$ that permutes the basis elements $e_1, ..., e_n$. In that case it is an $n \times n$ matrix with only 0's and 1's as entries and such that every row and every column have exactly one entry being 1. Is it true that for any n and any permutation P there exists an integer $k \ge 1$ such that $P^k = I$, where I is the identity matrix. Justify your answer.

Solution:

Recall from class that a linear transformation is uniquely determined by its action on a basis. Thus, as there are n! distinct permutations of the standard basis vectors e_1, \ldots, e_n , there are exactly n! distinct permutations matrices. Consider the list:

$$P, P^2, P^3, \dots, P^{n!+1}$$

We first establish that for all i > 0, P^i is a permutation matrix. We do this by proving that the composition of permutations is a permutation. Using the fact that a linear transformation is determined by its action on a basis, we can reduce this to showing that a composition of permutations of the standard basis vectors is still a permutation.

Since we now know every P^i in our list is a permutation, the pigeonhole principle says there must exist integers $1 \le i < j \le n! + 1$ such that $P^i = P^j$. Equivalently, we can say that $P^i = P^{j-i}P^i$. Thus, for any standard basis vector e_k , we have

$$P^i e_k = P^{j-i} P^i e_k$$

Since P^i is a permutation,

$$\{P^i e_k : k \in [1, n]\} = \{e_k : k \in [1, n]\}$$

Thus $P^{j-i} e_k = e_k$ for k = 1, . . . , n. As P^{j-i} is uniquely determined by its action on a basis, we see that $P^{j-i} = I$ as required.