Concept check - Week 2

Ashwin Bhola

CDS, NYU

Ashwin Bhola (CDS, NYU)

DS-GA 1014

Concept Check

- 1. Suppose U is a subspace of V with $U \neq V$. Let $S: U \to W$ be a linear transformation and $S \neq 0$ (which means that $Su \neq 0$ for some $u \in U$). Define $T: V \to W$ such that $T(v) = \begin{cases} Sv \ if \ v \in U \\ 0 \ if \ v \in V \ and \ v \notin U \end{cases}$. Prove that T is not a linear map on V
- 2. If $v_1, ..., v_m$ is a list of linearly independent vectors in \mathbb{R}^n , then for any $a \neq 0$ and index i, must $v_1, ..., v_{i-1}, av_i, ..., v_m$ be also linearly independent? Must they have the same span?
- 3. If $v_1, ..., v_m$ is a list of linearly independent vectors in \mathbb{R}^n , then for any $b \neq 0$ and index $i \neq j$, must $v_1, ..., v_{i-1}, v_i + bv_j, ..., v_m$ be also linearly independent? Must they have the same span?
- 4. Find two linearly independent vectors in \mathbb{R}^4 on the plane x + 2y 3z t = 0. Then find three independent vectors? What about four?

(*) marked problems are not as easy as others. Treat them as the most optional (optional-est?) thing among the whole course

Concept Check

- 5. Suppose v_1, \ldots, v_6 are six vectors in \mathbb{R}^4 . These vectors:
 - (do)(do not)(might not) span \mathbb{R}^4
 - (are)(are not)(might be) linearly independent
 - Any 4 of those vectors (are)(are not)(might be) a basis for \mathbb{R}^4
- 6. Suppose S is a 5 dimensional subspace of \mathbb{R}^6 . True or false (example if false):
 - Every basis for S can be extended to a basis for \mathbb{R}^6 by adding one more vector
 - Every basis for \mathbb{R}^6 can be reduced to a basis for S by removing one vector
- 7. (*)We can think of a permutation of n elements as a linear transformation $P: \mathbb{R}^n \to \mathbb{R}^n$ that permutes the basis elements e_1, \ldots, e_n . In that case it is an $n \times n$ matrix with only 0's and 1's as entries and such that every row and every column have exactly one entry being 1. Is it true that for any n and any permutation P there exists an integer $k \ge 1$ such that $P^k = I$, where I is the identity matrix. Justify your answer.

(*) marked problems are not as easy as others. Treat them as the most optional (optional-est?) thing among the whole course