Concept check Solutions - Week 1

Ashwin Bhola

CDS, NYU

- 1. Describe a subspace S of each vector space V and then a subspace SS of S:
 - $V_1 = all \ combinations \ of \ (1,1,0,0), \ (1,0,1,0) \ and \ (1,1,1,1)$
 - $V_2 = all symmetric 2 by 2 matrices$
 - $V_3 = all \ solutions \ to \ the \ equation \ \frac{d^4y}{dx^4} = 0$
- 2. Start with vectors $v_1 = (1,2,0)$ and $v_2 = (2,3,0)$
 - Are v_1 and v_2 linearly independent?
 - Are they a basis for any space?
 - What space V do they span?
 - What is the dimension of V?
 - Describe all vectors v_3 such that v_1, v_2, v_3 completes a basis of \mathbb{R}^3
- 3. Let w_1, w_2, w_3 be independent vectors. What can you say about the independence of $w_1 w_2$, $w_3 w_1, w_2 w_3$? What about $w_1 + w_2, w_1 + w_3, w_2 + w_3$?

Solutions

- 1. Describe a subspace S of each vector space V and then a subspace SS of S:
 - a) $V_1 = \text{all combinations of } (1,1,0,0), (1,0,1,0) \text{ and } (1,1,1,1)$
 - b) $V_2 = all symmetric 2 by 2 matrices$

c)
$$V_3 = \text{all solutions to the equation} \frac{d^4y}{dx^4} = 0$$

Solution:

- a) S = all combinations of (1,1,0,0), (1,0,1,0) and SS = span of (1,1,0,0)
- b) S = all diagonal 2 by 2 matrices and SS = all 2 by 2 matrices with a real number at (0,0) position and 0 everywhere else
- c) S = space of polynomials with degree at most 3, SS = space of polynomials of degree at most 2

- 2. Start with vectors $v_1 = (1,2,0)$ and $v_2 = (2,3,0)$
 - a) Are v_1 and v_2 linearly independent?
 - b) Are they a basis for any space?
 - c) What space V do they span?
 - d) What is the dimension of V?
 - e) Describe all vectors v_3 such that v_1 , v_2 , v_3 completes a basis of \mathbb{R}^3

Solution:

a) Yes, they are linearly independent. To see why:

$$av_1 + bv_2 = 0$$

$$\Rightarrow (a + 2b, 2a + 3b, 0) = 0$$

$$\Rightarrow a + 2b = 0 \text{ and } 2a + 3b = 0$$

$$\Rightarrow a = 0 \text{ and } b = 0$$

Thus, the linear combination of the vectors=0 only for all zero coefficients proving that they are linearly independent.

- 2. Start with vectors $v_1 = (1,2,0)$ and $v_2 = (2,3,0)$
 - a) Are v_1 and v_2 linearly independent?
 - b) Are they a basis for any space?
 - c) What space V do they span?
 - d) What is the dimension of V?
 - e) Describe all vectors v_3 such that v_1, v_2, v_3 completes a basis of \mathbb{R}^3

Solution:

- b) They are a basis for subspace $S = span((1,2,0), (2,3,0)) = (x, y, 0) \forall x, y \in \mathbb{R}$
- c) They span the x-y plane in \mathbb{R}^3 i.e $V = (x, y, 0) \forall x, y \in \mathbb{R}$
- d) Dimension of V=2
- *e*) $v_3 = \{(x, y, k) | x, y, k \in \mathbb{R} \text{ and } k \neq 0\}$

3. Let w_1, w_2, w_3 be independent vectors. What can you say about the independence of $w_1 - w_2$, $w_3 - w_1, w_2 - w_3$? What about $w_1 + w_2, w_1 + w_3, w_2 + w_3$?

Solution:

To check if $w_1 - w_2$, $w_3 - w_1$, $w_2 - w_3$ are linearly independent or not: $a(w_1 - w_2) + b(w_3 - w_1) + c(w_2 - w_3) = 0$ $\Rightarrow (a - b)w_1 + w_2(c - a) + w_3(b - c) = 0$

Since w_1, w_2, w_3 are linearly independent,

$$a - b = 0, c - a = 0, b - c = 0$$

 $\Rightarrow a = b = c$

We don't need to have all coefficients =0 for the linear combination of $w_1 - w_2$, $w_3 - w_1$, $w_2 - w_3$ to be zero. Therefore, $w_1 - w_2$, $w_3 - w_1$, $w_2 - w_3$ are linearly dependent

3. Let w_1, w_2, w_3 be independent vectors. What can you say about the independence of $w_1 - w_2$, $w_3 - w_1, w_2 - w_3$? What about $w_1 + w_2, w_1 + w_3, w_2 + w_3$?

Solution:

To check if $w_1 + w_2$, $w_3 + w_1$, $w_2 + w_3$ are linearly independent or not: $a(w_1 + w_2) + b(w_3 + w_1) + c(w_2 + w_3) = 0$ $\Rightarrow (a + b)w_1 + w_2(c + a) + w_3(b + c) = 0$

Since w_1, w_2, w_3 are linearly independent,

$$a + b = 0, c + a = 0, b + c = 0$$
$$\Rightarrow a = b = c = 0$$

All coefficients = 0 if the linear combination of $w_1 + w_2$, $w_3 + w_1$, $w_2 + w_3$ has to be zero. Therefore, $w_1 + w_2$, $w_3 + w_1$, $w_2 + w_3$ are linearly independent